Commandment #7: Challenge

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

In truth, this commandment is actually very closely related to the commandment about Learning. This is because if there are no gameplay paths that the player can come up with that give a reasonable chance of victory, or if the player can choose an arbitrary path (i.e if the game is too easy or too hard), then the player either cannot or does not need to learn anything! If we accept the premise that learning is a huge aspect of the fun of strategy games, then providing the correct challenge level is absolutely critical in creating an enjoyable experience.

Games have tried many methods of tailoring the challenge level correctly over the years, some overtly, others more subtly. One classic example is the concept of “grinding” in early RPG systems like Final Fantasy. The ability to grind (gaining power through some repetitive action) ensures that players of any skill level can eventually surpass whatever challenge the game throws at them. In theory this allows players to correctly tailor the challenge level to themselves. In practice it often results in players grinding until the game presents no strategic challenge (as players will often use the simplest solution available, even if it is less fun for them!). Not only that, but grindingly inherently involves engaging in a low-value activity in exchange for power, which means part of your game system is inherently boring to engage with (setting aside the quirk of human nature which assign some base-line satisfaction with gaining quantifiable power, as evidenced by clicker games).

Another common method of scaling difficulty is to allow players to simply select the difficulty from a menu at the start of the game. This is problematic as the player has no way of knowing which difficulty level will be appropriate for them in your game system until they have engaged with it. A more modern “fix” is to allow players to re-select their difficulty at any time from a menu. The problem with this approach is that it again gives players a trivial way to bypass the challenge and learning of your game, and therefore a lot of the fun! Additionally, I think that part of the job of a game designer is to do upfront work to craft a game experience the player will find enjoyable, and to some extent that includes selecting the difficulty. Players shouldn’t have to do the designer’s work for them (although I will admit that at times this is not feasible, in which case practical concessions need to be made).

Am I more of a “Ultra-Violence” guy or a “Nightmare!” guy…

BrainGoodGames have taken another approach, as outlined in the article on Learning. They use a single-player ladder system to develop a sense of player’s skill, and then adapt dynamically to continually modify the challenge to be suitable for them! In my estimation this solves a lot of the fun-circumvention problems of other systems, and removes some design burden from players. Win-win! A further augmentation present in Militia, and likely soon to be included in other BrainGoodGames is the inclusion of a “Placement Match” system to allow players who feel the difficulty is incorrectly calibrated to quickly set it to a (ideally) closer challenge level. This also allows experienced strategy game players to skip ranks that are too easy for them, and players’ to opt in to re-calibration after a large balance patch!

Commandment #6: Learning

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

Raph Koster explains in his novel “A Theory of Fun” that perhaps the most important source of enjoyment in a game comes from learning. I absolutely agree with this claim, and framing things in this way can allow us to make many inferences about the ideal way to design our games.

As explained in my recent article, carefully crafted ambiguity allows a designer to continually present the player with novel and yet at least somewhat comparable situations to those they have encountered before. In this context, players are able to use their existing knowledge of a game’s system, without being able to rely on rote memorization of solutions to succeed. As they receive feedback (most importantly through whether they won or lost), they can develop new insights into the system (i.e learn).

However, this is not quite enough, because there is another way that learning can be prevented that is quite common. If the game situation is too easy to figure out for the player, they can simply pick an arbitrary strategy and win, without weighing/considering several options (strategic thinking). If the game situation is too hard/beyond their capability to figure out, then all of the strategic paths they come up with will be equally ineffective (resulting in a loss). Either way, learning is stifled. 

Fortunately, multiplayer match-based games have already come up with an ingenious solution to this problem: a matchmaking/ladder ranking system! In such a system, players are (theoretically) matched against opponents that provide suitable difficulty for them. As Keith Burgun points out, such a system can also be applied in a single-player context in much the same way. As players win, the game gets harder, and as they lose, the game gets easier. At some point, they will be placed into matches of an appropriate challenge level (which allows for optimal learning!). This process can even be sped up by doing a “placement match” to estimate what rank/difficulty they should start at. 

This does beg the question of how to scale the system mathematically to increase the challenge in a way that does not feel arbitrary (not to mention designing a system that rewards learning in the first place). This is one of the primary challenges of designing a single-player strategy game in my opinion, and needs to be considered early on in the process. It is absolutely possible to come up with satisfying answers, and provide reasonable scaling up to a very high level of skill.

The single-player ladder system in Minos Strategos.

As one final point, I want to mention that a system such as this has the added benefit of reflecting a player’s growth and learning in a tangible way! By ranking up a player is able to see with some degree of certainty that they have in fact improved at understanding the system strategically, which is an awesome side effect.

Commandment #5: Ambiguity

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

A strategy game is a delicate thing. Humans are excellent at using heuristics to reduce complex problems to simple rules of thumb, and the formation of those heuristics (learning) is a huge part of the enjoyment. However, if a game features too much rules complexity, the player will spend their time trying to internalize the rules rather than engaging in higher level strategic thinking (more on this in Commandment #1 here). On the other hand, the less inherent (rules) complexity a game has, the easier it is for human minds to “solve” it, at which point it becomes more like a puzzle than a game. A classic example of a game that is highly solvable is tic-tac-toe.

Games do have a secret weapon to employ to help resist solvability, while maintaining some degree of elegance: Ambiguity. Interestingly, one of the most prevalent and oldest forms of ambiguity in games is simply another player! You are unable to know definitively what other players will do in a game (although some games are designed to test your ability to guess), so even in the case of a very deterministic system like Chess, your opponent contributes to a very high degree of unpredictability/unsolvability (such that we have played Chess for many many years without “solving” it).

However, in a single-player strategy game, we do not have the luxury of all this free ambiguity; designers must thoughtfully add it themselves. The most natural solution may seem to be to come up with an intelligent AI opponent to play against. This has a few drawbacks. Firstly, in a practical sense, playing against an AI opponent in a strategy game frequently has players casting about for ways to exploit the patterns in the behavior of the AI, rather than trying to form a deep understanding of the game system itself. Secondly, if we think of an AI as a set of rules, adding even the simplest AI to our game has a huge ballooning effect on the rules complexity of our game. Players may not need to know about the AI behavior, but they can learn about it, and doing so pushes against learning how the core systems of the game interact strategically.

Fortunately, there are many more techniques available to a game designer to add ambiguity to their games. Dice, cards and coins provide convenient metaphors so that the player can understand the possible outcomes and their likelihood without having a big reference table. Procedural generation is another fantastic tool for providing new non-rules information to the player while they have time to strategically react. The enemy movements in Militia are yet another example of providing new information for future turns. Each enemy chooses from ~4-8 possible moves, within simple rules, which has the effect of mixing up the board for next turn, but in a way that can be understood and planned for.

This board is a product of the board that came before it plus some simple enemy movement rules.

There are absolutely ways in which introducing too much ambiguity, or ambiguity that the player cannot react to or plan around can reduce the learning potential of your system or make it unsatisfying to play. I’ll be going into more detail about my take on the different forms ambiguity can take in later articles, but for now you can check out Keith Burgun’s excellent article on the subject.

Commandment #4: Moving Forwards

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

This commandment is another that I’ve absorbed from another designer, Keith Burgun. Fortunately Keith wrote an excellent article about the subject that you should read!

…Oh you’re still here? Well I can go into a little detail about why I think this is important, and how it applies to BrainGoodGames. To summarize, games should always be moving towards their conclusions. That is to say, players should not be able to take repeatable actions that move the game further away from the end conditions. The simplest form of this is a simple turn timer, where the game will end at the end of X turns, but there are other ways to push towards the same goal, like having the game end when a player has built 12 buildings in San Juan, or having a finite number of resources on a StarCraft map.

As a counterexample, some DotA matches (even pro matches!) have unfortunately gone on for over two (or more!) hours (!!) when an average game is expected to take somewhere around 45 minutes. This is both very bad for planning tournaments/play sessions and boring. The reason this is allowed to happen is that the fundamental force driving towards the end of the game (creeps pushing lanes) can be circumvented by certain powerful item/hero combinations, where although the creep waves increase in size (which is intended to move the game towards it’s conclusion), the player is effectively able to deal with arbitrary numbers of them. Another oft-cited example is the StarCraft player who “flys” their buildings off to corners of the map to avoid the victory condition of “all buildings destroyed”. A more subtle example, but one that exists in many games is the concept of “rebuilding” or “healing”; mechanics which naturally undo progress and return something to an earlier state.

image

The reason that this is boring in many cases is that the interest in a strategy game comes largely from dealing with novel situations that are at least somewhat comparable to past experiences. Returning to a previous game state circumvents the novel portion of that equation, and forces players to evaluate situations that are too similar to those they have seen too recently. This dramatically cuts down on the strategic value provided to the player per time spent. 

So make sure your strategy game keeps pushing towards it’s conclusion! 

Commandment #3: Player First!

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

This commandment is one that I’ve basically adopted in whole cloth from Sid Meier (the game designer behind Pirates, Railroad Tycoon and Civilization among others)! To see some more thoughts on the originator of the idea, check out this sweet design article by Soren Johnson.

This idea is fundamentally tied to a management of complexity/elegance of design. Many games (such as Sid Meier’s!) take their cues as at least partially a simulation of real-world systems. This has the twofold advantage of giving the player a reason to play your game (if they’re already interested in the subject matter) and some basic idea of the way things will work, without you having to explain them (related: Mark Rosewater’s thoughts on Piggybacking and Keith Burgun’s thoughts on theme).

However, strategy game designers need to be include to select only those elements which make for interesting player-facing decision-making. For example, in a war simulation, it may be tempting to include mechanics that revolve around supply lines, solider morale, etc etc. And then you may think that hey (!) I can tie the solider morale into the combat by giving certain bonuses, and cross compare that with the unique background of each solider, and so on and so forth.

How does this even work? What should I care about?

While this may provide value in the exploratory framework of a simulation game like Dwarf Fortress, where the value largely comes from discovering what the mechanics are and what emergent results they produce, it does not provide efficient value in terms of strategy game decision making. It may be very interesting for the designer as they set up the various status tables, modifiers and relationships between them, but so long as the player is not aware of or not considering them as an aspect of their decision, they are not a part of strategy (and therefore the fun/value of playing a strategy game, for its strategic merits).

By including a smaller and more carefully curated set of mechanics in your strategy game, you allow the player to get done with learning the rules as quickly as possible (as fun as they are to design and tweak) and move on to the joy of strategic play! (See also article 1 about Known Rules)

Commandment #2: Match-Based Play (Win/Loss)

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

Historically, single-player strategy games have primarily been focused around a campaign-based structure (see StarCraft, WarCraft, Age of Empires, etc). While it is possible to play these games single player against “bots”, there is very little or no variation in the starting conditions, so a strategy that you devise that works once will continue to work (not to mention that AI bots are typically not that fun to play against anyway, which is an article for another time).

The problems with this in my mind in terms of designing a strategy game are twofold. For one thing, as soon as the player has devised a solution that works every time (i.e after one match in the above examples, or after beating a mission once), the game has become a solved puzzle, which decreases the value of interacting with it considerably. Secondly, the sense of STAKES are greatly reduced in any given play session, because play can simply becomes a matter of trying solutions to the problem until one works.

Contrastingly, if a game takes its cues from multiplayer game designs (i.e sports, MOBAs, FPS games, fighting games, card games, etc) it can find answers to both of these problems. In these games, a play session is comprised of one or more matches in which some agent (usually the other team) makes moves or plays that a player must react to. Then, based on some combination of their execution and strategy as measured against their opponent, they are given clear, distinct feedback about how good that approach was (a win or a loss). This allows players to create and refine generalized inferences about the game system rather than specific solutions to static starting parameters.

Equally as important, a clear win/loss state provides players with a sense of accomplishment. If a game simply provides a “high score” system with which to judge your approach to the game, it does give feedback about the effectiveness of your approach, but each score always comes with the nagging sensation that it “could have been better”. A win tells the player “that was good enough!” rather than simply “that was X good”. Also of importance are strategies specifically tailored to have maximum payoff right at the end of the game, which is a facet of strategic thinking that many well-designed strategy games encourage.

Commandment #1: Known Rules

This post is part of a series of articles detailing the BrainGoodGames Design Commandments. You can see the full list here.

Strategy games need something for the player to consider (re: strategize). However, humans are fantastic at immediately grokking patterns and finding solutions to problems, so it can be very difficult for your system to keep up in the arms race and remain interesting! Some games attempt to remain interesting by having a ton of rules or very complex rules (grand strategy games are a classic example of this). While this does give the player something to think about, I would argue that oftentimes what they are thinking about is not strategy. I would define strategy as more

a) How do I accomplish my goals within these limitations?

rather than

b) How do these systems work? What are my limitations?

image

To that end, in order for the player to be more engaged with the types of strategic thinking I want, they need to know all the rules of the game (or at least the vast majority). This allows them to quickly understand their different options and weigh them against each other, as well as reach out mentally into future turns and still be able to process the chain of events that will happen.

TL:DR : making a carefully considered best guess as to what the correct move is when you know all the immediate ramifications will be is much more interesting than calculating out what those ramifications even ARE and then selecting the one that gives the highest number.

BrainGoodGames Design Commandments

I started BrainGoodGames last year because I felt a certain type of game was missing from the landscape. Over the years I’ve ravenously read watched and played as much varied game design thinking as I could, and I’ve come to some conclusions about the types of games I’ll strive to make. I call these the BrainGoodGames Design Commandments.

I may not meet all of these goals all the time, but they are the target that I’m aiming at. Also keep in mind that these are design guidelines for a specific type of game, and not applicable to all designs.

1) The complexity of the game should be in the strategy, not in rules comprehension (the player should know the rules!)

2) The game should have a clear win/loss state (match based play)

3) The player should be having the fun, not the designer (related to 1)

4) The game should always be moving towards its conclusion

5) The game will feature enough ambiguity to remain strategically interesting

6) The game will reward and encourage skill, learning and growth

7) The player should always be playing near the correct challenge level for them

8) The most interesting/fun way to play the game should also be strategically best

9) The game should not cease to be interesting without new content

10) The game should treat the player’s time as valuable

I plan to write a series of articles going into a bit more detail on each of these commandments, so stay tuned!

Advance Wars Game Design

Today I was watching a cool video about Advance Wars map design. Makes me want to play some more Advance wars :).

In particular I really like the way randomness is handled in Advance Wars. For the unfamiliar, units all have 10hp, and when you get in a fight the system will tell you you will do 52% damage for example. This means you have a 80% chance to do 5 damage and 20% chance to do 6 damage. There are two reasons this is cool:

1) The variance is within a narrow range (i.e only one point of damage different out of 10). This means that you can normally account for both possibilities (unless you are far behind, which is fine), and often either result is fine, and will provide the same general outcome for the particular localized battle while…

2)  The different outcomes most often result in minor differences in the amount of hp surviving units are left with. This is moreso Input Randomness (more desirable) for later turns than output randomness in my opinion. (I still have to write an article outlining my thoughts on the distinction here).

In addition, Advance Wars even attempts and largely succeeds in playing with an effective and player-influenceable information horizon with fog of war (and some additional ambiguity with weather effects). Overall a very strong design achieved with a relatively low complexity in terms of unit types, terrain types and rules.

Ridiculous Axes and Acres Ranks

Just wanted to highlight some of the truly outrageous Axes and Acres ranks out there. I had no idea ranks this high were even mathematically possible. Allan is truly a gifted player.

I’m super excited to see that several players have passed the 100 hours played mark at this point, with a few over 200 (and beyond!) 

I have a few planned features to support extremely high level play, and to allow for returning to the game after a break more easily, so stay tuned for that!